题目内容
若,则锐角____
二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论
①abc>0;
②4a+b=0;
③9a+c>3b;
④当x>﹣1时,y的值随x值的增大而增大,其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
已知二次函数y=ax2+bx+c中,自变量x与函数y的部分对应值如下表:
x
…
-2
0
2
3
y
8
当x=-1时,y=__________.
甲、乙两盒中各有3张卡片,卡片上分别标有数字﹣7、﹣1、3和﹣2、1、6,这些卡片除数字外都相同.把卡片洗匀后,从甲、乙两盒中各任意抽取1张,并把抽得卡片上的数字分别作为平面直角坐标系中一个点的横坐标、纵坐标.
(1)列出这样的点所有可能的坐标;
(2)求这些点落在第二象限的概率.
如图,某办公大楼正前方有一根高度是15米的旗杆ED,从办公楼顶端A测得旗杆顶端E的俯角α是45°,旗杆底端D到大楼前梯坎底边的距离DC是20米,梯坎坡长BC是12米,梯坎坡度i=1∶,求大楼AB的高度是多少?(结果保留根号)
某小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为( )
A. x(x+10)=900 B. (x﹣10)=900 C. 10(x+10)=900 D. 2[x+(x+10)]=900
如图,在 Rt△ABC 中,∠ABC=90°,AB=BC=,将△ABC 绕点 C 逆时针旋转 60°,得到△MNC, 连接 BM,则 BM 的长是 .
已知:如图,在△ABC中,点D在BC上,连接AD,点E、F分别在AD、AB上,连接DF,且满足∠DFE=∠C,∠1+∠2=180°.求证:∠CAB=∠DFB.
解:∵∠1+∠2=180° (已知)
∵∠DEF+∠2=180° ( )
∴∠1=∠DEF ( )
∴FE∥BC ( )
∴∠EFD= ( )
又 ∵∠DFE=∠C(已知)
∴ =
∴DF∥AC
∴∠CAB=∠DFB ( )
估算 的值,它的整数部分是( )
A. 1 B. 2 C. 3 D. 4