题目内容
边长为a的正六边形内有两个三角形(数据如图),则= .
如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.
求证:BE=CF.
如图,若△ABC≌△ADE,且∠B=65°,则∠BAD= .
如图,AB为⊙O的直径,点C在⊙O上,延长BC至点D,使DC=CB,延长DA与⊙O的另一个交点为E,连结AC,CE。
(1)求证:∠B=∠D;
(2)若AB= ,BC-AC=2,求CE的长。
如图,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点.若⊙O的半径为6,则GE+FH的最大值为( )
A.12 B.9 C.8 D.不存在
三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是_______.
如图1和2,在△ABC中,AB=13,BC=14,BH=5.
探究:如图1,AH⊥BC于点H,则AH= ,AC= ,△ABC的面积S△ABC= ;
拓展:如图2,点D在AC上(可与点A,C重合),分别过点A、C作直线BD的垂线,垂足为E,F,设BD=x,AE=m,CF=n(当点D与点A重合时,我们认为=0).
(1)用含x,m,n的代数式表示及;
(2)求(m+n)与x的函数关系式,并求(m+n)的最大值和最小值;
(3)对给定的一个x值,有时只能确定唯一的点D,直接写出这样的x的取值范围.
在联合会上,有A、B、C三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在△ABC的( ).
A.三边中线的交点 B.三条角平分线的交点
C.三边中垂线的交点 D.三边上高的交点
如图,△ABC是等边三角形,AD为中线,AD=AE,E在AC上,求∠EDC的度数.