题目内容
设A=48×(
+
+…+
),利用等式
=
(
-
)(n≥3),则与A最接近的正整数是( )
| 1 |
| 32-4 |
| 1 |
| 42-4 |
| 1 |
| 1002-4 |
| 1 |
| n2-4 |
| 1 |
| 4 |
| 1 |
| n-2 |
| 1 |
| n+2 |
| A、18 | B、20 | C、24 | D、25 |
分析:利用等式
=
(
-
)(n≥3),代入原式得出数据的规律性,从而求出.
| 1 |
| n2-4 |
| 1 |
| 4 |
| 1 |
| n-2 |
| 1 |
| n+2 |
解答:解:利用等式
=
(
-
)(n≥3),代入原式得:
A=48×(
+
+…+
)
=48×
(
-
+
-
+…+
-
)
=12×(1-
+
-
+
-
+…+
-
)
=12×[(1+
+
+
+…+
)-(
+
+…+
)]
=12×(1+
+
+
-
-
-
-
)
∵(1+
+
+
-
-
-
-
)≈2
∴12×(1+
+
+
-
-
-
-
)≈24
故选:C
| 1 |
| n2-4 |
| 1 |
| 4 |
| 1 |
| n-2 |
| 1 |
| n+2 |
A=48×(
| 1 |
| 32-4 |
| 1 |
| 42-4 |
| 1 |
| 1002-4 |
=48×
| 1 |
| 4 |
| 1 |
| 3-2 |
| 1 |
| 3+2 |
| 1 |
| 4-2 |
| 1 |
| 4+2 |
| 1 |
| 100-2 |
| 1 |
| 100+2 |
=12×(1-
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 98 |
| 1 |
| 102 |
=12×[(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 98 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 102 |
=12×(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 99 |
| 1 |
| 100 |
| 1 |
| 101 |
| 1 |
| 102 |
∵(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 99 |
| 1 |
| 100 |
| 1 |
| 101 |
| 1 |
| 102 |
∴12×(1+
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 99 |
| 1 |
| 100 |
| 1 |
| 101 |
| 1 |
| 102 |
故选:C
点评:此题主要考查了数的规律,关键是运用已知发现规律,题目规律性比较强.
练习册系列答案
相关题目
设A=48×(
+
+…
),则与A最接近的正整数是( )
| 1 |
| 32-4 |
| 1 |
| 42-4 |
| 1 |
| 1002-4 |
| A、18 | B、20 | C、24 | D、25 |