从前有个国王,他有三个儿子.大王子只喜欢读书,二王子只知道习武,小王子的兴趣十分广泛,爱读书,爱习武,还爱玩.

  有一天,国王对王子们说:“你们的祖父母去世早,你们可能都记不得他们的年龄了,谁能告诉我,你们的祖父母都活了多大岁数?”

  二王子问:“可以问您几个问题吗?”

  国王回答:“只能问一个.”

  “啊,问一个问题就猜到祖父母的年龄,太困难了,这恐怕连神仙也难办到!”大王子自言自语地说.

  国王又问小王子说:“你行吗?”小王子点了点头.大王子和二王子都很惊讶.

  小王子说:“请您把祖父的年龄放在前面、祖母的年龄放在后面,组成一个四位数,然后将这个四位数平方,接着减去祖母年龄的平方,然后除以祖父年龄的100倍,最后减去祖母的年龄,把所得的数告诉我.”

  国王不知道小王子想干什么,心算了一阵说:“得3129”.

  小王子马上答道:“祖父活到31岁,祖母活到29岁.”国王高兴地站起来说:“对极啦,就是这两个年龄!”“为什么让父王算一道题,就能把祖父母的年龄算出来呢?”“只许问一个问题,要猜出两人的年龄,还不能直接去问,你是怎样算的呢?”两位哥哥不停地问着小王子.

  小王子的妙算是让父王算出一个四位数,使得千位和百位上的数字与祖父的年龄有关;十位和个位上的数字与祖母的年龄有关.

  小王子的算法是:祖父的年龄放在前面、祖母的年龄放在后面组成的四位数是3129,将这个四位数平方,得9790641;减去祖母年龄的平方,得9789800;除以祖父年龄的100倍,得3158;最后减去祖母的年龄,得(31292-292)÷(31×100)-29=3129.

  大王子问:“为什么这样一定可以得到3129呢?”

小王子解释,可以利用整式的乘除的知识,把上面的算式以另一种方式做一下变形:

  [(31×100+29)2-292]÷3100-29=(312×1002+2×31×100×29+292-292)÷3100-29=(312×1002+2×31×100×29)÷3100-29=31×100+2×29-29=3129.

  原来小王子像魔术师变魔术一样,在计算中加了一点“伪装”,这就是“将四位数平方,减去祖母年龄的平方,除以祖父年龄的100倍,减去祖母的年龄”.其实这些步骤与计算祖父、祖母的年龄毫无关系,目的是使这种计算更隐蔽、更神秘(其实,我们只需根据由祖父、祖母年龄组成的四位数就可以知道祖父、祖母的年龄).

  同学们,你能通过整式的有关知识对小王子的算法作出解释吗?

实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?

建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:

在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?

为了找到解决问题的办法,我们可把上述问题简单化:

(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?

假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:1+3=4(如图①);

(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?

我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:1+3×2=7(如图②)

(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?

我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:1+3×3=10(如图③):

……

(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?

我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:1+3×(10-1)=28(如图⑩)

模型拓展一:在不透明的口袋中装有红、黄、白、蓝、绿五种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:

(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是________

(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是________

(3)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是________

模型拓展二:在不透明口袋中装有m种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:

(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是________

(2)若要确保摸出的小球至少有n个同色(n<20),则最少需摸出小球的个数是________

问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;

(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生.

实际问题:某学校共有18个教学班,每班的学生数都是40人.为了解学生课余时间上网情况,学校打算做一次抽样调查,如果要确保全校抽取出来的学生中至少有10人在同一班级,那么全校最少需抽取多少名学生?

建立模型:为解决上面的“实际问题”,我们先建立并研究下面从口袋中摸球的数学模型:

在不透明的口袋中装有红、黄、白三种颜色的小球各20个(除颜色外完全相同),现要确保从口袋中随机摸出的小球至少有10个是同色的,则最少需摸出多少个小球?

为了找到解决问题的办法,我们可把上述问题简单化:

(1)我们首先考虑最简单的情况:即要确保从口袋中摸出的小球至少有2个是同色的,则最少需摸出多少个小球?

假若从袋中随机摸出3个小球,它们的颜色可能会出现多种情况,其中最不利的情况就是它们的颜色各不相同,那么只需再从袋中摸出1个小球就可确保至少有2个小球同色,即最少需摸出小球的个数是:(如图①);

(2)若要确保从口袋中摸出的小球至少有3个是同色的呢?

我们只需在(1)的基础上,再从袋中摸出3个小球,就可确保至少有3个小球同色,即最少需摸出小球的个数是:(如图②)

(3)若要确保从口袋中摸出的小球至少有4个是同色的呢?

我们只需在(2)的基础上,再从袋中摸出3个小球,就可确保至少有4个小球同色,即最少需摸出小球的个数是:(如图③):

(10)若要确保从口袋中摸出的小球至少有10个是同色的呢?

我们只需在(9)的基础上,再从袋中摸出3个小球,就可确保至少有10个小球同色,即最少需摸出小球的个数是:(如图⑩)

模型拓展一:在不透明的口袋中装有红、黄、白、蓝、绿五种颜色的小球各20分(除颜色外完全相同),现从袋中随机摸球:

(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是         

(2)若要确保摸出的小球至少有10个同色,则最少需摸出小球的个数是        

(3)若要确保摸出的小球至少有个同色(),则最少需摸出小球的个数是        

模型拓展二:在不透明口袋中装有种颜色的小球各20个(除颜色外完全相同),现从袋中随机摸球:

(1)若要确保摸出的小球至少有2个同色,则最少需摸出小球的个数是          

(2)若要确保摸出的小球至少有个同色(),则最少需摸出小球的个数是      

问题解决:(1)请把本题中的“实际问题”转化为一个从口袋中摸球的数学模型;

(2)根据(1)中建立的数学模型,求出全校最少需抽取多少名学生.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网