题目内容
(1)如图1,平面内有一等腰直角三角板ABC(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,试证明线段AF,BF,CE之间的数量关系为AF+BF=2CE 。
(提示:过点C做BF的垂线,利用三角形全等证明。)
(2)若三角板绕点A顺时针旋转至图2的位置,其他条件不变,试猜想线段AF、BF、CE之间的数量关系,并证明你的猜想。
(3) 若三角板绕点A顺时针旋转至图3的位置,其他条件不变,则线段AF、BF、CE之间的数量关系为
第22题图1 第22题图2 第22题图3
如图:在一张长为8cm,宽为6cm的长方形上,请画出三个形状大小不同的腰长为5cm的等腰三角形(要求:等腰三角形的一个顶点与长方形的一个顶点重合,其余两顶点在长方形的边上)。
某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x套,则根据题意可得方程为 ( )
(A) (B)
(C) (D)
如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为 cm.
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,2.5微米等于0.000 002 5米,把0.000 002
用科学记数法表示为 ( )
A.2.5×106 B.0.25×10-5 C.2.5×10-6 D.25×10-7
已知关于的一元二次方程 有两个不相等的实数根.
(1)求的取值范围;
(2)若为正整数,求该方程的根.
某商品的进价为800元,出售标价为1200元,后来由于该商品积压,商店准备打折销售,要保证利润率不低于5%,该商品最多可打 【 】
A. 9折 B. 8折 C. 7折 D. 6折