题目内容
【题目】如图,
是等边三角形,
上有点D,分别以
为边作等边
和等腰
,边
、
交于点H,点F在
延长线上且
,连接
.求证:
![]()
(1)
;
(2)
.
【答案】(1)见解析;(2)见解析
【解析】
(1)由等边三角形的性质可证AB=CB,DB=EB,∠ABC=∠DBE=60°,进一步推出∠ABD=∠CBE,由SAS即可证得△ABD≌△CBE;
(2)先证∠CDH=∠HBE,由DF=DB可推出∠F=∠CDE,由△ABD≌△CBE可得到CE=AD,由AAS证得△FAD≌△DCE,得到FA=DC,即可推出结论BC=AF+CE.
证明:(1)∵△ABC与△BDE为等边三角形,
∴AB=CB,DB=EB,∠ABC=∠DBE=60°,
∴∠ABC∠DBC=∠DBE∠DBC,即∠ABD=∠CBE,
在△ABD和△CBE中,
,
∴△ABD≌△CBE(SAS);
(2)∵△ABC与△BDE为等边三角形,
∴∠CAB=∠ABC=∠ACB=60°,∠BED=60°,DB=DE,
在△DCH与△BEH中,
∵∠DCH=∠BEH=60°,∠DHC=∠BHE,
∴∠CDH=∠HBE,
由(1)知∠ABD=∠CBE,
∴∠CDE=∠ABD,
又∵△BDF为等腰三角形,则DB=DF,
∴∠F=∠ABD,DF=ED,
∴∠F=∠CDE,
由(1)知△ABD≌△CBE,
∴∠ECB=∠DAB=60°,CE=DA,
∴∠DCE=∠ECB+∠DCB=120°,∠FAD=180°∠CAB=120°,
∴∠DCE=∠FAD,
在△FAD和△DCE中,
,
∴△FAD≌△DCE(AAS),
∴FA=CD,
∴AF+CE=CD+AD=AC=BC,
即BC=AF+CE.
【题目】
开通了,中国联通公布了资费标准,其中包月
元时,超出部分国内拨打
元/分.由于业务多,小明的爸爸打电话已超出了包月费.下表是超出部分国内拨打的收费标准.
时间/分 | 1 | 2 | 3 | 4 | 5 | … |
电话费/元 | 0.36 | 0.72 | 1.08 | 1.44 | 1.80 | … |
(1)这个表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?
(2)如果用
表示超出时间,
表示超出部分的电话费,那么
与
的关系式是什么?
(3)如果打电话超出
分钟,需多付多少电话费?
(4)某次打电话的费用超出部分是
元,那么小明的爸爸打电话超出几分钟?