题目内容
如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为 .
【答案】分析:由于点B与D关于AC对称,所以连接BE,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.
解答:
解:连接BD,与AC交于点F.
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE=BE最小.
∵正方形ABCD的面积为12,
∴AB=2
.
又∵△ABE是等边三角形,
∴BE=AB=2
.
故所求最小值为2
.
故答案为:2
.
点评:此题主要考查轴对称--最短路线问题,要灵活运用对称性解决此类问题.
解答:
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE=BE最小.
∵正方形ABCD的面积为12,
∴AB=2
又∵△ABE是等边三角形,
∴BE=AB=2
故所求最小值为2
故答案为:2
点评:此题主要考查轴对称--最短路线问题,要灵活运用对称性解决此类问题.
练习册系列答案
相关题目
A、
| ||||
B、
| ||||
C、2-
| ||||
D、
|