题目内容

等腰直角△ABC和⊙O如图放置,已知AB=BC=1,∠ABC=90°,⊙O的半径为1,圆心O与直线AB的距离为5.现△ABC以每秒2个单位的速度向右移动,同时△ABC的边长AB、BC又以每秒0.5个单位沿BA、BC方向增大.
(1)当△ABC的边(BC边除外)与圆第一次相切时,点B移动了多少距离?
(2)若在△ABC移动的同时,⊙O也以每秒1个单位的速度向右移动,则△ABC从开始移动,到它的边与圆最后一次相切,一共经过了多少时间?
(3)在(2)的条件下,是否存在某一时刻,△ABC与⊙O的公共部分等于⊙O的面积?若存在,求出恰好符合条件时两个图形移动了多少时间?若不存在,请说明理由.

【答案】分析:(1)当△ABC第一次与圆相切时,应是AC与圆相切.如图,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,交B′C′′于F.设⊙O与直线l切于点D,连OD,则OE⊥A′C′,OD⊥直线l.由切线长定理,以及直角三角形的性质可求得CD的值,进而求得CC′的值,从而求得点C运动的时间,也就有了点运动的时间,点B移动的距离也就可求得了.
(2)△ABC与⊙O从开始运动到最后一次相切时,应为AB与圆相切,路程差为6,速度差为1,故从开始运动到最后一次相切的时间为6秒.
(3)若圆能在△ABC的内部时,则存在;若圆O不能在三角形的内部,则不存在;即求在(2)条件下,AC与圆的位置关系即可.
解答:
解:(1)设第一次相切时,△ABC移至△A′B′C′处,A′C′与⊙O切于点E,连OE并延长,
交B′C′于F.
设⊙O与直线l切于点D,连OD,则OE⊥A′C′,OD⊥直线l.
由切线长定理可知C’E=C′D,设C′D=x,则C′E=x,易知C′F=x.
x+x=1,
∴x=-1,
∴CC’=5-1-(-1)=5-
∴点C运动的时间为(5-)÷(2+0.5)=2-
∴点B运动的距离为(2-)×2=4-

(2)∵△ABC与⊙O从开始运动到最后一次相切时,是AB与圆相切,且圆在AB的左侧,故路程差为6,速度差为1,
∴从开始运动到最后一次相切的时间为6秒.

(3)∵△ABC与⊙O从开始运动到第二次相切时,路程差为4,速度差为1,
∴从开始运动到第二次相切的时间为4秒,此时△ABC移至△A″B″C″处,
A″B″=1+4×=3.
连接BO并延长交A″C″于点P,易证B″P⊥A″C″,且OP=-=<1.
∴此时⊙O与A″C″相交,
∴不存在.
点评:本题考查了直线与圆的相切,相交的概念,利用了切线长定理,等腰直角三角形的性质,
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网