题目内容
【题目】如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将△BCD沿直线CD折叠,使点B恰好落在边OA上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.
(1)求OE的长及经过O,D,C三点抛物线的解析式;
(2)一动点P从点C出发,沿CB以每秒2个单位长度的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长度的速度向点C运动,当点P到达点B时,两点同时停止运动,设运动时间为t秒,当t为何值时,DP=DQ;
(3)若点N在(1)中抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点坐标;若不存在,请说明理由.
![]()
【答案】(1)OE=3;y=
x2+
x;(2)t=
;(3)存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣
).
【解析】
(1)由折叠的性质可求得CE、CO,在Rt△COE中,由勾股定理可求得OE,设AD=m,在Rt△ADE中,由勾股定理可求得m的值,可求得D点坐标,结合C、O两点,利用待定系数法可求得抛物线解析式;
(2)用t表示出CP、BP的长,可证明△DBP≌△DEQ,可得到BP=EQ,可求得t的值;
(3)可设出N点坐标,分三种情况①EN为对角线,②EM为对角线,③EC为对角线,根据平行四边形的性质可求得对角线的交点横坐标,从而可求得M点的横坐标,再代入抛物线解析式可求得M点的坐标.
(1)∵CE=CB=5,CO=AB=4,
∴在Rt△COE中,OE=
=
=3,
设AD=m,则DE=BD=4﹣m,
∵OE=3,
∴AE=5﹣3=2,
在Rt△ADE中,由勾股定理可得AD2+AE2=DE2,即m2+22=(4﹣m)2,解得m=
,
∴D(﹣
,﹣5),
∵C(﹣4,0),O(0,0),
∴设过O、D、C三点的抛物线为y=ax(x+4),
∴﹣5=﹣
a(﹣
+4),解得a=
,
∴抛物线解析式为y=
x(x+4)=
x2+
x;
(2)∵CP=2t,
∴BP=5﹣2t,
∵BD=
,DE=
=
,
∴BD=DE,
在Rt△DBP和Rt△DEQ中,
,
∴Rt△DBP≌Rt△DEQ(HL),
∴BP=EQ,
∴5﹣2t=t,
∴t=
;
(3)∵抛物线的对称轴为直线x=﹣2,
∴设N(﹣2,n),
又由题意可知C(﹣4,0),E(0,﹣3),
设M(m,y),
①当EN为对角线,即四边形ECNM是平行四边形时,
则线段EN的中点横坐标为
,线段CM中点横坐标为
,
∵EN,CM互相平分,
∴
=﹣1,解得m=2,
又M点在抛物线上,
∴y=
×22+
×2=16,
∴M(2,16);
②当EM为对角线,即四边形ECMN是平行四边形时,
则线段EM的中点横坐标为
,线段CN中点横坐标为
,
∵EM,CN互相平分,
∴
=﹣3,解得m=﹣6,
又∵M点在抛物线上,
∴y=
×(﹣6)2+
×(﹣6)=16,
∴M(﹣6,16);
③当CE为对角线,即四边形EMCN是平行四边形时,
则M为抛物线的顶点,即M(﹣2,﹣
).
综上可知,存在满足条件的点M,其坐标为(2,16)或(﹣6,16)或(﹣2,﹣
).
【题目】某小区
号楼对外销售,已知
号楼某单元共
层,一楼为商铺,只租不售,二楼以上价格如下:第
层售价为
元/米
,从第
层起每上升一层,每平方米的售价提高
元,反之每降一层,每平方米的售价降低
元,已知该单元每套的面积均为
米![]()
优惠活动
活动一:若一次性付清所有房款,降价
,另免
年物业费共
元.
活动二:若购买者一次性付清所有房款,降价
,无赠送.
(1)请在下表中,补充完整售价
(元/米
)与楼层
(
取正整数)之间的的数关系式.
楼层 |
|
|
|
|
售价 | 不售 |
|
(2)某客户想购买该单元第
层的一套楼房,若他一次性付清购房款,可以参加如图优惠活动.请你帮助他分析哪种优惠方案更合算
![]()