题目内容

【题目】根据要求,解答下列问题:

1)①方程x2-x-2 =0的解为__________

②方程x2-2x-3 =0的解为_______

③方程x2-3x-4 =0的解为_______

...

2)根据以上方程特征及其解得特征,请猜想:

①方程x2-9x-10=0的解为_______

②请用配方法解方程x2-9x-10=0,以验证猜想结论的正确性。

3)应用:关于x的方程______的解为x1 =-1,x2 =n+1

【答案】1)①x1-1x22x1-1x23;③x1-1x24(2)x1-1x210;②见解析;(3x2nx-n-10

【解析】

1)①②③利用因式分解法求解即可;

2)①根据(1)中规律求解即可;

②先把-10移到右边,然后两边都加,把左边写成完全平方式,然后两边同时开平方即可;

3)利用前面方程的系数特征与它的解的关系求解.

解:①∵x2-x-2=0

(x+1)(x-2)=0

x1=-1x2=2

②∵x2-2x-3=0,

(x+1)(x-3)=0

x1=-1x2=3

③∵x2-3x-4=0,

(x+1)(x-4)=0

x1=-1x2=4

2)根据以上方程特征及其解的特征,请猜想:

①方程x2-9x-10=0的解为x1=-1x2=10

x2-9x-10=0

移项,得

x2-9x=10

配方,得

x2-9x+=10+

即(x-2=

开方,得

x-

x1=-1x2=10

3)由(1)和(2)可知,关于x的方程x2-nx-n+1=0的解为x1=-1x2=n+1

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网