题目内容
(1)已知a=
| ||||
|
| ||||
|
(2)已知x=
| 1 |
| 3 |
| 5a+7b |
| 5a-7b |
| 1 |
| 3 |
| 5a+7b |
| 5a-7b |
分析:(1)把a、b的值化简,求出a+b、ab的值,把原式化为(a+b)2-5ab,再整体代入求值;
(2)求出x+y和xy的值,把x2+xy+y2写成(x+y)2-xy,再代入求值.
(2)求出x+y和xy的值,把x2+xy+y2写成(x+y)2-xy,再代入求值.
解答:解:(1)∵a=
=(
+
)2=5+2
,b=
=(
-
)2=5-2
,
∴a+b=10,ab=(5+2
)(5-2
)=25-24=1,
∴原式=(a+b)2-5ab=100-5=95;
(2)∵x=
(
+
),y=
(
-
)
∴x+y=
,xy=
(5a+7b-5a+7b)=
b
∴原式=(x+y)2-xy
=(
)2-
b
=
(5a+7b)-
b
=
a+
b.
| ||||
|
| 3 |
| 2 |
| 6 |
| ||||
|
| 3 |
| 2 |
| 6 |
∴a+b=10,ab=(5+2
| 6 |
| 6 |
∴原式=(a+b)2-5ab=100-5=95;
(2)∵x=
| 1 |
| 3 |
| 5a+7b |
| 5a-7b |
| 1 |
| 3 |
| 5a+7b |
| 5a-7b |
∴x+y=
| 2 |
| 3 |
| 5a+7b |
| 1 |
| 9 |
| 14 |
| 9 |
∴原式=(x+y)2-xy
=(
| 2 |
| 3 |
| 5a+7b |
| 14 |
| 9 |
=
| 4 |
| 9 |
| 14 |
| 9 |
=
| 20 |
| 9 |
| 14 |
| 9 |
点评:此题巧用完全平方公式,利用整体代入的思想可使计算简便.
练习册系列答案
相关题目