题目内容

9.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法正确的个数是(  )
①a>0;②b>0;③c<0;④b2-4ac>0;⑤a+b+c=0.
A.1B.2C.3D.4

分析 根据抛物线开口方向对①进行判断;根据抛物线的对称轴位置对②进行判断;根据抛物线与y轴的交点位置对③进行判断;根据抛物线与x轴的交点个数对④进行判断;当x=1时,y>0,则a+b+c>0对⑤进行判断.

解答 解:∵抛物线开口向下,
∴a<0,所以①错误;
∵抛物线的对称轴在y轴右侧,
∴-$\frac{b}{2a}$>0,
∴b>0,所以②正确;
∵抛物线与y轴的交点在x轴上方,
∴c>0,所以③错误;
∵抛物线与x轴有2个交点,
∴△=b2-4ac>0,所以④正确;
∵x=1时,y>0,
∴a+b+c>0,所以⑤错误.
故选B.

点评 本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网