题目内容

如图,△OAB的底边经过⊙O上的点C,且OA=OB,CA=CB,⊙O与OA、OB分别交于D、E两点.
(1)求证:AB是⊙O的切线;
(2)若D为OA的中点,阴影部分的面积为,求⊙O的半径r.
(1)证明:连OC,如图,

∵OA=OB,CA=CB,
∴OC⊥AB,
∴AB是⊙O的切线;
(2)解:∵D为OA的中点,OD=OC=r,
∴OA=2OC=2r,
∴∠A=30°,∠AOC=60°,AC= r,
∴∠AOB=120°,AB="2" r,
∴S阴影部分=SOAB-S扇形ODE= •OC•AB- = -
•r•2 r- r2= -
∴r=1,
即⊙O的半径r为1.解析:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网