题目内容
如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
【答案】分析:(1)(BC÷点N的运动速度)与(OA÷点M的运动速度)可知点M能到达终点.
(2)经过t秒时可得NB=y,OM-2t.根据∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S与t的函数关系式后根据t的值求出S的最大值.
(3)本题分两种情况讨论(若∠AQM=90°,PQ是等腰Rt△MQA底边MA上的高;若∠QMA=90°,QM与QP重合)求出t值.
解答:
解:(1)点M.(1分)
(2)经过t秒时,NB=t,OM=2t,
则CN=3-t,AM=4-2t,
∵A(4,0),C(0,4),
∴AO=CO=4,
∵∠AOC=90°,
∴∠BCA=∠MAQ=45°,
∴QN=CN=3-t
∴PQ=1+t,(2分)
∴S△AMQ=
AM•PQ=
(4-2t)(1+t)=-t2+t+2.(3分)
∴S=-t2+t+2=-t2+t-
+
+2=-(t-
)2+
,(5分)
∵0≤t<2
∴当
时,S的值最大.(6分)
(3)存在.(7分)
设经过t秒时,NB=t,OM=2t
则CN=3-t,AM=4-2t
∴∠BCA=∠MAQ=45°(8分)
①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高
∴PQ是底边MA的中线
∴PQ=AP=
MA
∴1+t=
(4-2t)
∴t=
∴点M的坐标为(1,0)(10分)
②若∠QMA=90°,此时QM与QP重合
∴QM=QP=MA
∴1+t=4-2t
∴t=1
∴点M的坐标为(2,0).(12分)
点评:本题考查的是二次函数的有关知识,考生还需注意的是要学会全面分析问题的可行性继而解答.
(2)经过t秒时可得NB=y,OM-2t.根据∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S与t的函数关系式后根据t的值求出S的最大值.
(3)本题分两种情况讨论(若∠AQM=90°,PQ是等腰Rt△MQA底边MA上的高;若∠QMA=90°,QM与QP重合)求出t值.
解答:
(2)经过t秒时,NB=t,OM=2t,
则CN=3-t,AM=4-2t,
∵A(4,0),C(0,4),
∴AO=CO=4,
∵∠AOC=90°,
∴∠BCA=∠MAQ=45°,
∴QN=CN=3-t
∴PQ=1+t,(2分)
∴S△AMQ=
∴S=-t2+t+2=-t2+t-
∵0≤t<2
∴当
(3)存在.(7分)
设经过t秒时,NB=t,OM=2t
则CN=3-t,AM=4-2t
∴∠BCA=∠MAQ=45°(8分)
①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高
∴PQ是底边MA的中线
∴PQ=AP=
∴1+t=
∴t=
∴点M的坐标为(1,0)(10分)
②若∠QMA=90°,此时QM与QP重合
∴QM=QP=MA
∴1+t=4-2t
∴t=1
∴点M的坐标为(2,0).(12分)
点评:本题考查的是二次函数的有关知识,考生还需注意的是要学会全面分析问题的可行性继而解答.
练习册系列答案
相关题目