题目内容
【题目】如图,Rt△ABC中,BC=4,AC=8,Rt△ABC的斜边在x轴的正半轴上,点A与原点重合,随着顶点A由O点出发沿y轴的正半轴方向滑动,点B也沿着x轴向点O滑动,直到与点O重合时运动结束.在这个运动过程中.
(1)AB中点P经过的路径长_____.
(2)点C运动的路径长是_____.
![]()
【答案】
π 8
﹣12
【解析】(1)根据直角三角形斜边中线等于斜边一半,确定中点P的运动路径:以O为圆心,以OP为半径的
圆弧,半径OP=
AB=2
,代入周长公式计算即可;
(2)分为两种情况:
①当A从O到现在的点A处时,如图2,此时C′A⊥y轴,点C运动的路径长是CC′的长;
②当A再继续向上移动,直到点B与O重合时,如图3,此时点C运动的路径是从C′到C,长是CC′;
分别计算并相加.
(1)如图1.
∵∠AOB=90°,P为AB的中点,∴OP=
AB.
∵AB=4
,∴OP=2
,∴AB中点P运动的轨迹是以O为圆心,以OP为半径的
圆弧,即AB中点P经过的路径长=
×2×2
π=
π;
(2)①当A从O到现在的点A处时,如图2,此时C′A⊥y轴,点C运动的路径长是CC′的长,∴AC′=OC=8.
∵AC′∥OB,∴∠AC′O=∠COB,∴cos∠AC′O=cos∠COB=
=
=
,∴OC′=4
,∴CC′=4
﹣8;
②当A再继续向上移动,直到点B与O重合时,如图3,此时点C运动的路径是从C′到C,长是CC′,CC′=OC′﹣BC=4
﹣4.
综上所述:点C运动的路径长是:4
﹣8+4
﹣4=8
﹣12;
故答案为:(1)
π; (2)8
﹣12.
![]()
【题目】小东根据学习函数的经验,对函数
的图象与性质进行了探究.下面是小东的探究过程,请补充完整,并解决相关问题:
(1)函数
的自变量x的取值范围是 ;
(2)下表是y与x的几组对应值.
x | … |
|
|
| 0 |
| 1 |
| 2 |
| 3 | 4 | … |
y | … |
|
|
| 2 |
| 4 |
| 2 |
|
| m | … |
表中m的值为________________;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点. 根据描出的点,画出函数
的大致图象;
![]()
(4)结合函数图象,请写出函数
的一条性质:______________________.
(5)解决问题:如果函数
与直线y=a的交点有2个,那么a的取值范围是______________ .