题目内容
因式分解:(x+y)3(x-y)-(x+y)(x-y)3.
考点:提公因式法与公式法的综合运用
专题:
分析:根据提取公因式法,可得平方差公式,根据平方差公式,可得答案.
解答:解:原式=(x+y)(x-y)[(x+y)2-(x-y)2]
=(x+y)(x-y)[(x+y)+(x-y)][(x+y)-(x-y)]
=(x+y)(x-y)(x+y+x-y)(x+y-x+y)
=4xy(x+y)(x-y).
=(x+y)(x-y)[(x+y)+(x-y)][(x+y)-(x-y)]
=(x+y)(x-y)(x+y+x-y)(x+y-x+y)
=4xy(x+y)(x-y).
点评:本题考查了因式分解,利用了提取公因式,平方差公式,注意要分解彻底.
练习册系列答案
相关题目