题目内容
下列四组线段中,可以构成直角三角形的是( )
A.4cm、5cm、6cm B.1cm、cm、3cm
C.2cm、3cm、4cm D.1.5cm、2cm、2.5cm
计算题
(1)(2)
若m>n,下列不等式不一定成立的是( )
A.m+2>n+2 B.2m>2n C.-2m<-2n D.
如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(4,8),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E,那么点D的坐标为 .
如图,直线y=x―4与y轴、x轴分别交于点A、B,点C为双曲线y=上一点,OC∥AB,连接BC交双曲线于点D,点D恰好是BC的中点,则k的值是( )
A. B.2 C.4 D.
如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
如图,在△ABC中,AH⊥BC于H,正方形DEFG内接于△ABC,点D、E分别在边AB、AC上,点G、F在边BC上.如果BC=20,正方形DEFG的面积为25,那么AH的长是 .
小强遇到这样一个问题:如图1,在△ABC中,点D在线段BC上,∠BAD=75°,∠CAD=30°, AD=2,BD=2DC,求AC的长.
小强发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).
(1)请回答:∠ACE的度数为 ,AC的长为 .
参考小强思考问题的方法,解决问题:
(2)如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2ED,求BC的长.
如图,小强同学为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D 两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是( ).
A. 四边形ABCD由矩形变为平行四边形 B. BD的长度变大
C. 四边形ABCD的面积不变 D. 四边形ABCD的周长不变