题目内容
解方程:
(1);(2)x﹣ [x﹣(x﹣)]=2.
如图,矩形ABCD中,AD=5,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是___________.
为打造“文化太湖,书香圣地”,太湖中学的学生积极开展“图书飘扬”活动,让全体师生创美好,校团委学生处在对上学期学生借阅登记簿进行统计时发现,在4月份有1000名学生借阅了名著类书籍,5月份人数比4月份增加10%,6月份全校借阅名著类书籍人数比5月份增加340人.
(1)求6月份全校借阅名著类书籍的学生人数;
(2)列方程求从4月份到6月份全校借阅名著类书籍的学生人数的平均增长率.
二次函数y=ax2+bc+c的图象如图所示,则下列判断中错误的是( )
A. 图象的对称轴是直线x=﹣1 B. 当x>﹣1时,y随x的增大而减小
C. 当﹣3<x<1时,y<0 D. 一元二次方程ax2+bx+c=0的两个根是﹣3,1
某服装厂加工了一批西服,成本为每套200元,原定每套以280元的价格销售,这样每天可销售200套,若每套在原价的基础上降低10元销售,则每天可多售出100套.据此回答下列问题:
(1)若按原价销售,则每天可获利 元.(销售利润=单件利润×销售数量)
(2)若每套降低10元销售,则每天可卖出 套西服,共获利 元.
(3)若每套西服售价降低10x元,则每套西服的售价为 元,每天可以销售西服 套,共可获利 元.(用含x的代数式表示)
魔术师为大家表演魔术,他请观众想一个数,然后将这个数按一下步骤操作:
魔术师立刻说出观众想的那个数,观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,我们发现假设想的数为a时,请按魔术师要求的运算过程用代数式表示为_____(要求化简).
甲、乙两人练习短距离赛跑,测得甲每秒跑7米,乙每秒跑6.5米,如果甲让乙先跑2秒,那么几秒钟后甲可以追上乙.若设x秒后甲追上乙,列出的方程应为( )
A. 7x=6.5 B. 7x=6.5(x+2)
C. 7(x+2)=6.5x D. 7(x﹣2)=6.5x
已知代数式x+2y的值是5,则代数式3x+6y+1的值是________.
如图,已知:△OAB,△EOF都是等腰直角三角形,∠AOB=900,中,∠EOF=900,连结AE、BF.
求证:(1) AE=BF;(2) AE⊥BF.