题目内容
若等腰三角形的两边长为6和8,则其周长为________.
20或22
分析:题目给出等腰三角形有两条边长为6和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
解答:当6为腰长时,周长为6+6+8=20;
当8为腰长时,周长为8+8+6=22;
故答案为20或22.
点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
分析:题目给出等腰三角形有两条边长为6和7,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
解答:当6为腰长时,周长为6+6+8=20;
当8为腰长时,周长为8+8+6=22;
故答案为20或22.
点评:本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.
练习册系列答案
相关题目
一个正方形的周长与一个等腰三角形的周长相等,若等腰三角形的两边长为4
和10
,则这个正方形的对角线长为( )
| 2 |
| 2 |
| A、12 | ||
B、
| ||
C、2
| ||
D、6
|