题目内容
填空(x-y)(x2+xy+y2)=________;(x-y)(x3+x2y+xy2+y3)=________
根据以上等式进行猜想,当n是偶数时,可得:(x-y)(xn+xn-1y+yn-2y2+…+x2yn-2+xyn-1+yn)=________.
x3-y3 x4-y4 xn+1-yn+1
分析:根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
解答:原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;
故答案为:x3-y3;
原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;
故答案为:x4-y4;
原式=xn+1+xny+xyn-2+x2yn-1+xyn-xny-xn-1y2-yn-1y2-…-x2yn-1-xyn-yn+1=xn+1-yn+1,
故答案为:xn+1-yn+1.
点评:本题考查了多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
分析:根据多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
解答:原式=x3+x2y+xy2-x2y-xy2-y3=x3-y3;
故答案为:x3-y3;
原式=x4+x3y+x2y2+xy3-x3y-x2y2-xy3-y4=x4-y4;
故答案为:x4-y4;
原式=xn+1+xny+xyn-2+x2yn-1+xyn-xny-xn-1y2-yn-1y2-…-x2yn-1-xyn-yn+1=xn+1-yn+1,
故答案为:xn+1-yn+1.
点评:本题考查了多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.
练习册系列答案
相关题目