题目内容

在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:根据勾股定理列式求出BC,再利用三角形的面积求出点A到BC上的高,根据角平分线上的点到角的两边的距离相等可得点D到AB、AC上的距离相等,然后利用三角形的面积求出点D到AB的长,再利用△ABD的面积列式计算即可得解.
解答:∵∠BAC=90°,AB=3,AC=4,
∴BC===5,
∴BC边上的高=3×4÷5=
∵AD平分∠BAC,
∴点D到AB、AC上的距离相等,设为h,
则S△ABC=×3h+×4h=×5×
解得h=
S△ABD=×3×=BD•
解得BD=
故选A.
点评:本题考查了角平分线的性质,三角形的面积,勾股定理,利用三角形的面积分别求出相应的高是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网