题目内容
下列图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
如图,⊙O的半径为2,C1是函数y=x2的图象,C2是函数y=-x2的图象,则阴影部分的面积是________.
有12米长的木条,要做成一个如图的窗框,如果假设窗框横档的长度为x米,那么窗框的面积是(木条的宽度忽略不计)( )
A. x(6﹣x)米2 B. x(12﹣x)米2 C. x(6﹣3x)米2 D. x(6﹣x)米2
如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为_____.
如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=8,tan∠ABD=,则线段AB的长为( )
A. B. 2 C. 5 D. 10
矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.
(1)如图1,已知折痕与边BC交于点O,连接AP、OP、OA.
①求证:△OCP∽△PDA;
②若△OCP与△PDA的面积比为1:4,求边AB的长.
(2)如图2,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P、A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M、N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.
设a、b是方程x2+x﹣2020=0的两个实数根,则(a﹣1)(b﹣1)的值为_____.
小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?(成本=进价×销售量)
下列说法正确的是( ).
(A)两个有理数相加,就是把它们的绝对值相加
(B)两个有理数相减,就是把它们的绝对值相减
(C)两个有理数相加,和可能小于其中的每一个加数
(D)两个有理数相减,差一定小于被减数