题目内容
在Rt△ABC中,∠C=90°,如果AC=2,cosA=,那么AB的长是( )
A. 3 B. C. D.
如图,□ABCD的边AD与经过A、B、C三点的⊙O相切.
(1) 求证:AB=AC;
(2) 如图2,延长DC交⊙O于点E,连接BE,sin∠E=,⊙O半径为13,求□ABCD 的面积.
如图,是两个各自分割均匀的转盘,同时转动两个转盘,转盘停止时(若指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止),两个指针所指区域的数字和为偶数的概率是( )
A. B. C. D.
如图,P是双曲线y=(x>0)的一个分支上的一点,以点P为圆心,1个单位长度为半径作⊙P,当⊙P与直线x=4相切时,点P的坐标为_____.
如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是( )
A. 10 B. 18 C. 20 D. 22
我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.
(1)写出你所知道的四边形中是勾股四边形的两种图形的名称_____,_____;
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)
如图在梯形ABCD中,AD∥BC,AD⊥CD,BC=CD=2AD,E是CD上一点,∠ABE=45°,则tan∠AEB的值等于( )
A. 3 B. 2 C. D.
如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.
(1)若EF=2,求△AEF的面积;
(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.
若x、y为有理数,下列各式成立的是( )
A. (﹣x)3=x3 B. (﹣x)4=﹣x4 C. x4=﹣x4 D. ﹣x3=(﹣x)3