题目内容
10.计算(1)-20+(-14)-(-18)-13
(2)-64÷3$\frac{1}{5}$×1$\frac{1}{4}$
(3)-16÷(-2)3-|-$\frac{1}{16}$|×(-4)
(4)($\frac{1}{4}$-$\frac{1}{6}$-$\frac{1}{12}$)×24.
分析 (1)原式利用减法法则变形,计算即可得到结果;
(2)原式从左到右依次计算即可得到结果;
(3)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;
(4)原式利用乘法分配律计算即可得到结果.
解答 解:(1)原式=-20-14+18-13=-29;
(2)原式=-64×$\frac{5}{16}$×$\frac{5}{4}$=-25;
(3)原式=-16÷(-8)-$\frac{1}{16}$×(-4)=2$\frac{1}{4}$;
(4)原式=6-4-2=0.
点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目
2.已知:ab≠0,且M=$\frac{|a|}{a}+\frac{|b|}{b}+\frac{|ab|}{ab}$,当a、b取不同的值时,M有( )
| A. | 唯一确定的值 | B. | 2种不同的取值 | C. | 3种不同的取值 | D. | 4种不同的取值 |
19.
已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.
(1)求证:AD=AE;
(2)求证:∠DAE=∠BAC;
(2)若∠2=30°,试判断△ABC的形状,并说明理由.
(1)求证:AD=AE;
(2)求证:∠DAE=∠BAC;
(2)若∠2=30°,试判断△ABC的形状,并说明理由.
20.
如图,长方形ABCD中,点E在边AB上,将长方形ABCD沿直线DE折叠,点A恰好落在边BC上的点F处,若AE=5cm,BF=3cm,则CD的长度是( )
| A. | 10cm | B. | 9cm | C. | 8cm | D. | 7cm |