题目内容
下列汽车标志中,是中心对称图形的是( )
A. B. C. D.
如图,在Rt△ABC中,∠ACB=90°,点D、F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.
(1)求证:△BCD≌△FCE;
(2)若EF∥CD,求∠BDC的度数.
若顺次连结四边形ABCD各边中点所得四边形是矩形,则原四边形必定是( )
A. 正方形 B. 对角线相等的四边形
C. 菱形 D. 对角线相互垂直的四边形
如图,菱形ABCD中,对角线AC交BD于O, E是CD的中点,且OE=2,则菱形ABCD的周长等于_____________.
对于代数式x2-10x+24,下列说法:①它是二次三项式; ②该代数式的值可能等于2017;③分解因式的结果是(x-4)(x-6);④该代数式的值可能小于-1.其中正确的有( )
A. 1个 B. 2个 C. 3 个 D. 4个
如图,⊙O的直径FD⊥弦AB于点H,E是上一动点,连结FE并延长交AB的延长线于点C,AB=8,HD=2.
(1)求⊙O的直径FD;
(2)在E点运动的过程中,EF•CF的值是否为定值?若是,求出其定值;若不是,请说明理由;
(3)当E点运动到的中点时,连接AE交DF于点G,求△FEA的面积.
计算:
如图,△ABC是等边三角形,点A坐标为(-8,0)、点B坐标为(8,0),点C在y轴的正半轴上.一条动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线交于点D,与线段BC交于点E.以DE为边向左侧作等边△DEF,EF与y轴的交点为G.当点D与点E重合时,直线l停止运动,设直线l的运动时间为t秒(t >0).
(1)填空:点C的坐标为_____,四边形ODEG的形状一定是_____;
(2)请用t 的代数式表示线段DE 的长;
(3)试探究:四边形ODEG能不能是菱形?若能,求出相应的t的值;若不能,请说明理由.
(4)当t为何值时,点G恰好落在以DE为直径的⊙M上?并求出此时⊙M的半径.
为了加强视力保护意识,小明要在书房里挂一张视力表.由于书房空间狭小,他想根据测试距离为5m的大视力表制作一个测试距离为3m的小视力表.如图,如果大视力表中“E”的高度是3.5cm,那么小视力表中相应“E”的高度是 ( )
A. 3cm B. 2.5cm C. 2.3cm D. 2.1cm