题目内容

如图,已知动点P在函数y=数学公式(x>0)的图象上运动,PM⊥x轴于点M,PN⊥y轴于点N,线段PM、PN分别与直线AB:y=-x+1交于点E,F,则AF•BE的值为


  1. A.
    4
  2. B.
    2
  3. C.
    1
  4. D.
    数学公式
C
分析:由于P的坐标为(a,),且PN⊥OB,PM⊥OA,那么N的坐标和M点的坐标都可以a表示,那么BN、NF、BN的长度也可以用a表示,接着F点、E点的也可以a表示,然后利用勾股定理可以分别用a表示AF,BE,最后即可求出AF•BE.
解答:解:作FG⊥x轴,
∵P的坐标为(a,),且PN⊥OB,PM⊥OA,
∴N的坐标为(0,),M点的坐标为(a,0),
∴BN=1-
在直角三角形BNF中,∠NBF=45°(OB=OA=1,三角形OAB是等腰直角三角形),
∴NF=BN=1-
∴F点的坐标为(1-),
同理可得出E点的坐标为(a,1-a),
∴AF2=(1-1-2+(2=,BE2=(a)2+(-a)2=2a2
∴AF2•BE2=•2a2=1,即AF•BE=1.
故选C.
点评:本题的关键是通过反比例函数上的点P来确定E、F两点的坐标,进而通过坐标系中两点的距离公式得出所求的值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网