题目内容
分析:连接AD,根据直角三角形的性质和等腰三角形的性质得出AD=BD,∠FAD=∠B=45°,求出∠ADF=∠EDB,证△ADF≌△BDE,根据全等三角形的性质推出即可.
解答:证明:连接AD,
∵在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,
∴AD=BD,∠B=∠C=∠CAD=∠BAD=45°,AD⊥BC,
∴∠ADB=∠EDF=90°,
∴∠ADF=∠EDB=90°-∠ADE,
在△ADF和△BDE中,
∴△ADF≌△BDE(ASA),
∴DE=DF.
∵在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,
∴AD=BD,∠B=∠C=∠CAD=∠BAD=45°,AD⊥BC,
∴∠ADB=∠EDF=90°,
∴∠ADF=∠EDB=90°-∠ADE,
在△ADF和△BDE中,
|
∴△ADF≌△BDE(ASA),
∴DE=DF.
点评:本题考查了等腰三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线的性质的应用,主要考查学生运用性质进行推理的能力.
练习册系列答案
相关题目