题目内容
下列各图中,不是中心对称图形的是( )
A. B. C. D.
已知:如图,线段和射线交于点.
()利用尺规完成以下作图,并保留作图痕迹(不写作法).
①在射线上作一点,使,连接;
②作的角平分线交于点;
③在射线上作一点,使,连接.
()在()所作的图形中,通过观察和测量可以发现,请将下面的证明过程补充完整.
证明:∵,
∴____________________,①
∵平分,
∴,
∴__________,②
∵,
∴.( )
已知点C是线段AB上的一点,不能确定点C是AB中点的条件是:
A. AC=CB B. AC=AB C. AB=2BC D. AC+CB=AB
如图,△ABC中,A,B两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是2,则点B的横坐标是_____.
如图,在△ABC中,AB=6,AC=8,BC=10,D、E分别是AC、AB的中点,则以DE为直径的圆与BC的位置关系是( )
A. 相切 B. 相交 C. 相离 D. 无法确定
如图所示,在△ABC中,任意一点M(x0,y0)经平移后对应点为M1(x0-3,y0-5),将△ABC作同样平移,得到△A1B1C1,求△A1B1C1的三个顶点的坐标.
如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B、C、D处的其他福娃,规定:向上向右走为正,向下向左走为负.如果从A到B记为:A·B(+1,+4),从B到A记为:B·A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中:
(1)A·C(__________,__________),B·C(__________,__________),C·__________(-3,-4);
(2)若贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置点E.
如果方程x2+px+q=0的两个根是x1、x2,那么x1+x2=-p,x1·x2=q.请根据以上结论,解决下列问题:
(1)已知关于x的方程x2+mx+n=0 (n≠0),求出一个一元二次方程,使它的两根分别是已知方程两根的倒数;
(2)已知a、b满足a2-15a-5=0,b2-15b-5=0,求的值;
(3)已知a、b、c均为实数,且a+b+c=0,abc=16,求正数c的最小值.
一组数据2,4,m,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )
A. 3.5,3 B. 3,4 C. 3,3.5 D. 4,3