ÌâÄ¿ÄÚÈÝ
ÒÑÖªÁ½º¯Êý£º·´±ÈÀýº¯Êýy=| k |
| x |
| 1 |
| 4 |
£¨1£©ÈôÁ½¸öº¯ÊýµÄͼÏó¶¼¾¹ýµã£¨2£¬2£©£®
¢ÙÇóÁ½º¯ÊýµÄ±í´ïʽ£»
¢ÚÖ¤Ã÷·´±ÈÀýº¯ÊýµÄͼÏó¾¹ý¶þ´Îº¯ÊýͼÏóµÄ¶¥µã£®
£¨2£©Èô¶þ´Îº¯Êýy=
| 1 |
| 4 |
| 1 |
| 4 |
·ÖÎö£º£¨1£©¢Ù°Ñx=2£¬y=2·Ö±ð´úÈëÁ½¸öº¯ÊýµÄ±í´ïʽ£¬¾ÍÄÜÇó³ökºÍaµÄÖµ£¬¼´¿ÉµÃµ½Á½º¯ÊýµÄ±í´ïʽ£»¢ÚÏÈÇó³ö¶þ´Îº¯ÊýͼÏóµÄ¶¥µã×ø±ê£¬°Ñ¶¥µã×ø±ê´úÈë·´±ÈÀýº¯ÊýµÄ½âÎöʽ£¬¿´Á½±ßÊÇ·ñÏàµÈ¼´¿É£»
£¨2£©²»´æÔÚ·ûºÏÌõ¼þµÄaµÄÖµ£¬ÀíÓÉÊÇÏȸù¾Ý¸ùµÄÅбðʽÇó³öaµÄ·¶Î§£¬Éè·½³Ì
x2+x+a=0µÄÁ½¸ù·Ö±ðΪx1¡¢x2£¬¸ù¾Ý¸ùÓëϵÊý¹ØÏµÓУºx1+x2=-4£¬x1•x2=4a£¬Çó³ö
+
µÄÖµ¼´¿ÉÇó³öa=1£¬ÓëÇó³öµÄaµÄȡֵ·¶Î§a£¼1²»·û£¬¼´¿ÉÅжϴ𰸣®
£¨2£©²»´æÔÚ·ûºÏÌõ¼þµÄaµÄÖµ£¬ÀíÓÉÊÇÏȸù¾Ý¸ùµÄÅбðʽÇó³öaµÄ·¶Î§£¬Éè·½³Ì
| 1 |
| 4 |
| 1 |
| x1 |
| 1 |
| x2 |
½â´ð£º£¨1£©¢Ù½â£º¸ù¾ÝÌâÒ⣬°Ñx=2£¬y=2·Ö±ð´úÈëÁ½¸öº¯ÊýµÄ±í´ïʽ£¬
ÓÉ2=
µÃk=4£¬
ËùÒÔ·´±ÈÀýº¯ÊýΪy=
£¬
ÓÉ2=1+2+aµÃa=-1£¬
ËùÒÔ¶þ´Îº¯ÊýΪy=
x2+x-1£¬
´ð£ºÁ½º¯ÊýµÄ±í´ïʽ·Ö±ðÊÇy=
£¬y=
x2+x-1£®
¢ÚÖ¤Ã÷£ºÓÉy=
x2+x-1=
(x+2)2-2Öª£¬
¶þ´Îº¯ÊýͼÏóµÄ¶¥µã×ø±êΪ£¨-2£¬-2£©£¬
ÓÖµ±x=-2ʱ£¬y=
=-2£¬
ËùÒÔ·´±ÈÀýº¯ÊýµÄͼÏó¾¹ý¶þ´Îº¯ÊýͼÏóµÄ¶¥µã£®
£¨2£©½â£º²»´æÔÚ·ûºÏÌõ¼þµÄaµÄÖµ£¬
ÀíÓÉ£º¸ù¾ÝÌâÒ⣬ÓÉ¡÷=1-4¡Á
a£¾0µÃa£¼1£¬
¡àaµÄȡֵ·¶Î§ÊÇa£¼1£¬
Éè·½³Ì
x2+x+a=0µÄÁ½¸ù·Ö±ðΪx1¡¢x2£¬
ÓɸùÓëϵÊý¹ØÏµÓУº
x1+x2=-4£¬x1•x2=4a£¬
ÓÖ
+
=
=
=-
£¬
ÓÉ-
=-1£¬
µÃa=1ÕâÓëa£¼1²»·û£¬
¡à²»´æÔÚ·ûºÏÌõ¼þµÄaµÄÖµ£®
´ð£º²»´æÔÚ
ÓÉ2=
| k |
| 2 |
ËùÒÔ·´±ÈÀýº¯ÊýΪy=
| 4 |
| x |
ÓÉ2=1+2+aµÃa=-1£¬
ËùÒÔ¶þ´Îº¯ÊýΪy=
| 1 |
| 4 |
´ð£ºÁ½º¯ÊýµÄ±í´ïʽ·Ö±ðÊÇy=
| 4 |
| x |
| 1 |
| 4 |
¢ÚÖ¤Ã÷£ºÓÉy=
| 1 |
| 4 |
| 1 |
| 4 |
¶þ´Îº¯ÊýͼÏóµÄ¶¥µã×ø±êΪ£¨-2£¬-2£©£¬
ÓÖµ±x=-2ʱ£¬y=
| 4 |
| -2 |
ËùÒÔ·´±ÈÀýº¯ÊýµÄͼÏó¾¹ý¶þ´Îº¯ÊýͼÏóµÄ¶¥µã£®
£¨2£©½â£º²»´æÔÚ·ûºÏÌõ¼þµÄaµÄÖµ£¬
ÀíÓÉ£º¸ù¾ÝÌâÒ⣬ÓÉ¡÷=1-4¡Á
| 1 |
| 4 |
¡àaµÄȡֵ·¶Î§ÊÇa£¼1£¬
Éè·½³Ì
| 1 |
| 4 |
ÓɸùÓëϵÊý¹ØÏµÓУº
x1+x2=-4£¬x1•x2=4a£¬
ÓÖ
| 1 |
| x1 |
| 1 |
| x2 |
| x1+x2 |
| x1x2 |
| -4 |
| 4a |
| 1 |
| a |
ÓÉ-
| 1 |
| a |
µÃa=1ÕâÓëa£¼1²»·û£¬
¡à²»´æÔÚ·ûºÏÌõ¼þµÄaµÄÖµ£®
´ð£º²»´æÔÚ
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶Ô¶þ´Îº¯ÊýµÄÐÔÖÊ£¬½âÒ»ÔªÒ»´Î·½³Ì£¬¸ùµÄÅбðʽ£¬¸ùÓëϵÊýµÄ¹ØÏµ£¬Óôý¶¨ÏµÊý·¨Çó·´±ÈÀýº¯Êý¡¢¶þ´Îº¯ÊýµÄ½âÎöʽµÈ֪ʶµãµÄÀí½âºÍÕÆÎÕ£¬ÄÜ×ÛºÏÔËÓÃÕâЩÐÔÖʽøÐмÆËãÊǽâ´ËÌâµÄ¹Ø¼ü£¬ÌâÐͽϺã¬×ÛºÏÐÔÇ¿£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿