题目内容

如图,四边形ABCD内接于大圆O,且各边与小圆相切于点E,F,G,H.求证:四边形ABCD是正方形.
考点:正多边形和圆
专题:证明题
分析:连结OE、OF、OG、OH,利用切线的性质以及弦心距相等则弦相等可证明A、B、C、D是大圆O的四等分点,进而可证明四边形ABCD是正方形.
解答:证明:
连结OE、OF、OG、OH.
∵四边形ABCD与小圆分别切于点E、F、G、H,
∴OE=OF=OG=OH,OE⊥AB、OF⊥BC、OG⊥CD、OH⊥AD.
∴AB=BC=CD=DA.
∴A、B、C、D是大圆O的四等分点.
∴四边形ABCD是正方形.
点评:本题考查了正多边形与圆的关系,解题的关键是熟记把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网