题目内容
考点:正多边形和圆
专题:证明题
分析:连结OE、OF、OG、OH,利用切线的性质以及弦心距相等则弦相等可证明A、B、C、D是大圆O的四等分点,进而可证明四边形ABCD是正方形.
解答:证明:
连结OE、OF、OG、OH.
∵四边形ABCD与小圆分别切于点E、F、G、H,
∴OE=OF=OG=OH,OE⊥AB、OF⊥BC、OG⊥CD、OH⊥AD.
∴AB=BC=CD=DA.
∴A、B、C、D是大圆O的四等分点.
∴四边形ABCD是正方形.
连结OE、OF、OG、OH.
∵四边形ABCD与小圆分别切于点E、F、G、H,
∴OE=OF=OG=OH,OE⊥AB、OF⊥BC、OG⊥CD、OH⊥AD.
∴AB=BC=CD=DA.
∴A、B、C、D是大圆O的四等分点.
∴四边形ABCD是正方形.
点评:本题考查了正多边形与圆的关系,解题的关键是熟记把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.
练习册系列答案
相关题目
A、30
| ||
B、30
| ||
| C、60海里 | ||
D、30
|
下列说法中正确的是( )
| A、0没有倒数 |
| B、0没有相反数 |
| C、0没有绝对值 |
| D、平方为0的数不存在 |