题目内容
计算:
(1)|﹣|﹣(π﹣)0+tan45°
(2)a(a﹣3)+(2﹣a)(2+a)
若一次函数y=kx+b的图象如图所示,则y<0时自变量x的取值范围是( )
A.x>2 B.x<2 C.x>﹣1 D.x<﹣1
解方程:
(1)(2x﹣3)2=25
(2)x2﹣4x﹣3=0 (配方法)
关于x的方程x2﹣4=0的根是( )
A.2 B.﹣2 C.2,﹣2 D.2,
如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.
(1)判断直线MN与⊙O的位置关系,并说明理由;
(2)若OA=4,∠BCM=60°,求图中阴影部分的面积.
据国网江苏电力公司分析,我省预计今夏统调最高用电负荷将达到86000000千瓦,这个数据用科学记数法可表示为 千瓦.
以下命题:①同位角相等;②长度相等弧是等弧;③对角线相等的平行四边形是矩形;④抛物线y=(x+2)2+1的对称轴是直线x=﹣2.其中真命题的个数是( )
A.1 B.2 C.3 D.4
如图,抛物线y=﹣(x+1)(x﹣3)与x轴交于A、B两点,与y轴交于点C,点D为该抛物线的对称轴上一点,当点D到直线BC和到x轴的距离相等时,则点D的坐标为 .
如图,已知正方形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,抛物线y=x2+bx+c经过点A,B,交正x轴于点D,E是OC上的动点(不与C重合)连接EB,过B点作BF⊥BE交y轴与F
(1)求b,c的值及D点的坐标;
(2)求点E在OC上运动时,四边形OEBF的面积有怎样的规律性?并证明你的结论;
(3)连接EF,BD,设OE=m,△BEF与△BED的面积之差为S,问:当m为何值时S最小,并求出这个最小值.