题目内容
若圆内接正三角形的边长为2,则圆的半径为________.
分析:画图,利用正三角形的性质找到由内切圆半径,外接圆半径和边长的一半所组成的三角形(如△OBD),然后进行计算可求出外接圆半径.
解答:
连OB,OA,
∵△ABC是正三角形,
∴AO垂直平分BC,设垂足为D.
∴BD=1;
又∵∠OBD=30°,
∴OD=
故填
点评:熟悉正三角形的性质.它的内心,外心等是重合的.记住含30度的直角三角形三边之间的数量关系(1:
练习册系列答案
相关题目