题目内容
如图,PA、PB是⊙O的切线,切点分别是A、B.若∠APB=60°,PA=3.则⊙O的半径是________.
分析:连接OA、OP,根据切线长定理即可求得∠OPA=
解答:
∵PA、PB是⊙O的切线
∴∠OAP=90°,∠APO=
Rt△OAP中,
∵tan∠APO=
∴OA=PA•tan30°=3×
点评:本题考查了切线的性质定理,以及三角函数,正确作出直角三角形是关键.
练习册系列答案
相关题目