题目内容
如图,已知抛物线的对称轴为直线,交轴于、两点,交轴于点,其中点的坐标为(3,0)。
(1)直接写出点的坐标;
(2)求二次函数的解析式。
已知,如图以AB为直径的⊙O,BC⊥AB,AC交⊙O于点D,点E在⊙O上,若∠DEB=25°,则∠C= .
如图,直线分别交轴、轴于A、C两点,且与双曲线在第一象限交于点P,作PB⊥轴于B,.
(1)直接写出点A、C的坐标;
(2)求双曲线的函数式
如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在轴上,OC在轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的,那么点B′的坐标是( )
A.(3,2)
B.(-2,-3)
C.(2,3)或(-2,-3)
D.(3,2)或(-3,-2)
为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设的长度为,矩形区域的面积为.
(1)求y与x之间的函数关系式,并注明自变量x的取值范围;
(2)x为何值时,y有最大值?最大值是多少?
如图,在中,,,,点是上的一个动点(不与、两点重合),于点,于点,点从靠近点的某一点向点移动,矩形的周长变化情况是( )
A.逐渐减小 B.逐渐增大 C.先增大后减小 D.先减小后增大
已知,则下列各式中不正确的是( )
A. B. C. D.
如图.圆O的直径垂直于弦,垂足是,,,的长__.
某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件
(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价为多少元时,该文具每天的销售利润最大;
(3)如果该文具的销售单价高于进价且不超过30元,请你计算最大利润.