题目内容
已知△ABC∽△DEF,BC边上的高与EF边上的高之比为2:3,则△ABC与△DEF的面积之比为________.
4:9
分析:由△ABC与△DEF相似且对应边上的高之比为2:3,可求得△ABC与△DEF相似比,即可求得△ABC与△DEF的面积之比.
解答:∵△ABC∽△DEF,BC边上的高与EF边上的高之比为2:3,
∴△ABC与△DEF相似比为2:3,
∴△ABC与△DEF的面积之比为4:9.
故答案为:4:9.
点评:本题考查对相似三角形性质.注意相似三角形面积的比等于相似比的平方与相似三角形对应高的比等于相似比.
分析:由△ABC与△DEF相似且对应边上的高之比为2:3,可求得△ABC与△DEF相似比,即可求得△ABC与△DEF的面积之比.
解答:∵△ABC∽△DEF,BC边上的高与EF边上的高之比为2:3,
∴△ABC与△DEF相似比为2:3,
∴△ABC与△DEF的面积之比为4:9.
故答案为:4:9.
点评:本题考查对相似三角形性质.注意相似三角形面积的比等于相似比的平方与相似三角形对应高的比等于相似比.
练习册系列答案
相关题目