题目内容
2020
2020
.分析:先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S3的值.
解答:解:设Rt△ABC的三边分别为a、b、c,
∴S1=a2=940,S2=b2=1080,S3=c2,
∵△ABC是直角三角形,
∴a2+b2=c2,即S1+S2=S3,
∴S3=S1+S2=940+1080=2020.
故答案为:2020.
∴S1=a2=940,S2=b2=1080,S3=c2,
∵△ABC是直角三角形,
∴a2+b2=c2,即S1+S2=S3,
∴S3=S1+S2=940+1080=2020.
故答案为:2020.
点评:本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.
练习册系列答案
相关题目