题目内容
18.如图,M是线段AC的中点,N是线段BC的中点.(1)如果AM=$\frac{5}{4}$BC=5cm,求MN的长;
(2)若C为线段AB上任一点,且AC=xcm,BC=(10-x)cm,求MN的长.
分析 (1)根据M是线段AC的中点,AM=$\frac{5}{4}$BC=5cm,于是得到AM=CM=5cm,BC=4cm,由于N是线段BC的中点,得到CN=$\frac{1}{2}$BC=2cm,根据线段的和差即可得到结论;
(2)根据M是线段AC的中点,N是线段BC的中点,于是得到CM=$\frac{1}{2}$AC=$\frac{1}{2}$xcm,CN=$\frac{1}{2}$BC=$\frac{1}{2}$(10-x)=5-$\frac{1}{2}$x,即可得到结论.
解答 解:(1)∵M是线段AC的中点,AM=$\frac{5}{4}$BC=5cm,
∴AM=CM=5cm,BC=4cm,
∵N是线段BC的中点,
∴CN=$\frac{1}{2}$BC=2cm,
∴MN=CM+CN=7cm;
(2)∵M是线段AC的中点,N是线段BC的中点,
∴CM=$\frac{1}{2}$AC=$\frac{1}{2}$xcm,CN=$\frac{1}{2}$BC=$\frac{1}{2}$(10-x)=5-$\frac{1}{2}$x,
∴CN+CM=5cm.
点评 本题考查了两点之间的距离的应用,主要考查学生的观察图形的能力和计算能力.
练习册系列答案
相关题目
8.下列关于近似数的说法,正确的是( )
| A. | 3.10精确到十分位 | B. | 1.6×105精确到万位 | ||
| C. | 300精确到百位 | D. | 近似数1.7和1.70表示同一个数 |
9.2sin30°=( )
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\sqrt{3}$ | D. | 2 |
6.下列四个数中,最小的数是( )
| A. | -2 | B. | -2.1 | C. | 0 | D. | |-3| |
13.小明利用计算机设计了一个计算程序,输入和输出的数据如表:
那么,当输入数据为201时,输出的数据为605.
| 输入 | … | 1 | 2 | 3 | 4 | 5 | … |
| 输出 | … | 5 | 8 | 11 | 14 | 17 | … |
10.直角三角形两条直角边的长分别为3和4,则斜边长为( )
| A. | 4 | B. | 5 | C. | 6 | D. | 10 |