题目内容
菱形,矩形,正方形都具有的性质是( )
A. 四条边相等,四个角相等 B. 对角线相等
C. 对角线互相垂直 D. 对角线互相平分
如图,图1是△ABC,图2是“8字形”(将线段AB、CD相交于点O,连接AD、CB形成的图形),图3是一个五角星形状,试解答下列问题:
(1)图1的△ABC中,∠A+∠B+∠C=_____,并证明你写出的结论;(要有推理证明过程)
(2)图2的“8字形”中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:_____;
(3)若在图2的条件下,作∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N(如图4).请直接写出∠P与∠D、∠B之间数量关系:____;
(4)图3中的点A向下移到线段BE上时,请直接写出∠CAD+∠B+∠C+∠D+∠E=____.
一个口袋中有红球、白球共20只,这些球除颜色外都相同,将口袋中的球搅拌均匀,从中随机摸出一只球,记下它的颜色后再放回,不断重复这一过程,共摸了50次,发现有30次摸到红球,则估计这个口块中有红球大约多少只?( )
A.8只 B.12只 C.18只 D.30只
计算:2cos60°+tan45°=_____.
在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有( )
A. 15个 B. 20个 C. 30个 D. 35个
如图,四边形ABCD是矩形,对角线AC、BD相交于点O,BE∥AC交DC的延长线于点E.
(1)求证:BD=BE;
(2)若?DBC=30?,CD=4,求四边形ABED的面积.
一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式为:_________________
百舸竞渡,激情飞扬.为纪念爱国诗人屈原,某市举行龙舟赛.甲、乙两支龙舟队在比赛时,路程(米)与时间(分钟)之间的函数图象如图所示,根据图象回答下列问题:
最先达到终点的是________队,比另一对早________分钟到达;
在比赛过程中,乙队在第________分钟和第________分钟时两次加速;
求在什么时间范围内,甲队领先?
相遇前,甲乙两队之间的距离不超过的时间范围是________.
已知a+b=3,ab=2,则的值是( )
A. 1 B. 4 C. 16 D. 9