题目内容
【题目】已知抛物线
与
轴只有一个交点,且与
轴交于
点,如图,设它的顶点为B.
![]()
(1)求
的值;
(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;
(3)将此抛物线向下平移4个单位后,得到抛物线
,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线
上求点P,使得△
是以EF为直角边的直角三角形?
【答案】(1)m = 2;(2)证明见解析;(3)满足条件的P点的坐标为(
,
)或(
,
).
【解析】试题分析:(1)根据抛物线与x轴只有一个交点可知△的值为0,由此得到一个关于m的一元一次方程,解此方程可得m的值;
(2)根据抛物线的解析式求出顶点坐标,根据A点在y轴上求出A点坐标,再求C点坐标,根据三个点的坐标得出△ABC为等腰直角三角形;
(3)根据抛物线解析式求出E、F的坐标,然后分别讨论以E为直角顶点和以F为直角顶点P的坐标.
试题解析:(1)∵抛物线y=x2-2x+m-1与x轴只有一个交点,
∴△=(-2)2-4×1×(m-1)=0,
解得,m=2;
(2)由(1)知抛物线的解析式为y=x2-2x+1=(x-1)2,易得顶点B(1,0),
当x=0时,y=1,得A(0,1).
由1=x2-2x+1,解得,x=0(舍)或x=2,所以C点坐标为:(2,1).
过C作x轴的垂线,垂足为D,则CD=1,BD=xD-xB=1.
![]()
∴在Rt△CDB中,∠CBD=45°,BC=
.
同理,在Rt△AOB中,AO=OB=1,于是∠ABO=45°,AB=
.
∴∠ABC=180°-∠CBD-∠ABO=90°,AB=BC,
因此△ABC是等腰直角三角形;
(3)由题知,抛物线C′的解析式为y=x2-2x-3,
当x=0时,y=-3;
当y=0时,x=-1或x=3,
∴E(-1,0),F(0,-3),即OE=1,OF=3.
第一种情况:若以E点为直角顶点,设此时满足条件的点为P1(x1,y1),作P1M⊥x轴于M.
![]()
∵∠P1EM+∠OEF=∠EFO+∠OEF=90°,
∴∠P1EM=∠EFO,得Rt△EFO∽Rt△P1EM,
则
,即EM=3P1M.
∵EM=x1+1,P1M=y1,
∴x1+1=3y1①
由于P1(x1,y1)在抛物线C′上,
则有3(x12-2x1-3)=x1+1,
整理得,3x12-7x1-10=0,解得,
x1=
,或x2=-1(舍去)
把x1=
代入①中可解得,
y1=
.
∴P1(
,
).
第二种情况:若以F点为直角顶点,设此时满足条件的点为P2(x2,y2),作P2N⊥y轴于N.
![]()
同第一种情况,易知Rt△EFO∽Rt△FP2N,
得
,即P2N=3FN.
∵P2N=x2,FN=3+y2,
∴x2=3(3+y2)②
由于P2(x2,y2)在抛物线C′上,
则有x2=3(3+x22-2x2-3),
整理得3x22-7x2=0,解得x2=0(舍)或x2=
.
把x2=
代入②中可解得,
y2=
.
∴P2(
,
).
综上所述,满足条件的P点的坐标为:(
,
)或(
,
).
【题目】某厂从2011年起开始投入技改资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表所示:
年度 | 2011 | 2012 | 2013 | 2014 |
投入技改资金 | 2.5 | 3 | 4 | 4.5 |
产品成本 | 7.2 | 6 | 4.5 | 4 |
(1)请认真分析表中的数据,从你学过的一次函数和反比例函数中确定哪种函数能表示其变化规律,并求出它的表达式;
(2)按照这种变化规律,2015年已投入技改资金5万元.
①预计产品成本每件比2014年降低多少万元?
②如果打算在2015年把每件产品的成本降低到3.2万元,那么还需投入技改资金多少万元?(精确到0.01万元)