题目内容

如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.
求证:AF=BE.
分析:根据AB、CD为⊙O中两条直径,得出OA=OB,OC=OD,再根据CE=DF,得出OE=OF,从而证出△AOF和△BOE全等,即可得出答案.
解答:解:∵AB、CD为⊙O中两条直径,
∴OA=OB,OC=OD,
∵CE=DF,
∴OE=OF,
在△AOF和△BOE中,
OA=OB
∠AOF=∠BOE
OF=OE

∴△AOF≌△BOE(SAS),
∴AF=BE.
点评:此题考查了圆的认识和全等三角形的判定及性质,关键是根据圆的性质得出△AOF和△BOE全等,要能综合应用全等三角形的判定与性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网