题目内容

1.如图,点E为AC的中点,点D为△ABC外一点,且满足射线BD为∠ABC的平分线,∠ABC+∠ADC=180°,请判断DE和AC的位置关系,并证明.

分析 根据∠ABC+∠ADC=180°,所以A,B,C,D四点共圆,得到∠ABD=∠ACD,∠DBC=∠DAC,由射线BD为∠ABC的平分线,得到∠ABD=∠CBD,从而得到∠DAC=∠DCA,即△ADC为等腰三角形,根据等腰三角形的三线合一,即可解答.

解答 解:∵∠ABC+∠ADC=180°,
∴∠BAC+∠BCD=180°,
∴A,B,C,D四点共圆,
∴∠ABD=∠ACD,∠DBC=∠DAC,
∵射线BD为∠ABC的平分线,
∴∠ABD=∠CBD,
∴∠DAC=∠DCA,
∴△ADC为等腰三角形,
∵点E为AC的中点,
∴DE⊥AC(三线合一).

点评 本题考查了四点共圆、等腰三角形的性质,解决本题的关键是证明△ADC为等腰三角形.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网