题目内容

如图所示,正方形ABCD的边长为4,E为CD 的中点,F为AD边上一点,且不与点D重合,AF=a。
(1)判断四边形BCEF的面积是否存在最大或最小值,若存在,求出最大或最小值;若不存在,请说明理由;
(2)若∠BFE=∠FBC,求tan∠AFB的值;
(3)在(2)的条件下,若将“E为CD的中点”改为“CE=k·DE”,其中k为正整数,其他条件不变,请直接写出tan∠AFB的值。(用k的代数式表示)

解:(1)如图①,
S四边形BCEF=S正方形ABCE-S△ABF-S△DEF
=42-×4×a×2×(4一a)=12-a,
∵F为AD边上一点,且不与点D重合,
∴0≤a<4,
∴当点F与点A重合时,a=0,S四边形BCEF存在最大值12, S四边形BCEF不存在最小值;

(2)如图②,延长BC、FE交于点P,
∵正方形ABCD中,AD∥BC,
∴△DEF∽△CEP,
∵E为CD的中点,
==1,PF=2EF
∵∠BFE=∠FBC
∴PB=PF,
∴AF=a,
∴PC=DF=4-a,PB=PF=8-a,EF=
∵Rt△DEF中,EF2=DE2+DF2,
∴(2 =22+(4-a)2
整理,得3a2-16a+16=0,
解得a1=,a2=4
∵F点不与D点重合,
∴a=4不成立,
∴a=,tan∠AFB==3;
(3) tan∠AFB=2k+l。(K为正整数)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网