题目内容
(2010•温州一模)如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S2= ;Sn= .(用含n的式子表示)
【答案】分析:由三角形的相似性可求得S2、S3、S4的值,则Sn的值也可用含n的式子表示出来.
解答:
解:由于各三角形为等边三角形,且各边长为2,过各三角形的顶点B1、B2、B3…向对边作垂线,垂足为M1、M2、M3,
∵△AB1C1是等边三角形,
∴AD1=AC1•sin60°=2×
=
,
∵△B1C1B2也是等边三角形,
∴C1B1是∠AC1B2的角平分线,
∴AD1=B2D1=
,
故S1=S△B2C1A-S△AC1D1=
×2×
-
×2×
=
;
S2=S△B3C2A-S△AC2D2=
×4×
-
×4×
=
;
作AB∥B1C1,使AB=AB1,连接BB1,则B2,B3,…Bn在一条直线上.
∵Bn Cn∥AB,
∴
=
=
,
∴BnDn=
•AD=
,
则DnCn=2-BnDn=2-
=
.
△BnCnBn+1是边长是2的等边三角形,因而面积是:
.
△Bn+1DnCn面积为Sn=
•
=
•
=
.
即第n个图形的面积Sn=
.
点评:本题考查了相似三角形的性质,题目新颖,同学们要好好掌握.
解答:
∵△AB1C1是等边三角形,
∴AD1=AC1•sin60°=2×
∵△B1C1B2也是等边三角形,
∴C1B1是∠AC1B2的角平分线,
∴AD1=B2D1=
故S1=S△B2C1A-S△AC1D1=
S2=S△B3C2A-S△AC2D2=
作AB∥B1C1,使AB=AB1,连接BB1,则B2,B3,…Bn在一条直线上.
∵Bn Cn∥AB,
∴
∴BnDn=
则DnCn=2-BnDn=2-
△BnCnBn+1是边长是2的等边三角形,因而面积是:
△Bn+1DnCn面积为Sn=
即第n个图形的面积Sn=
点评:本题考查了相似三角形的性质,题目新颖,同学们要好好掌握.
练习册系列答案
相关题目
(2010•温州一模)宏远商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:
(1)已知一批商品有A、B两种型号,体积一共是20 m3,质量一共是10.5吨,求A、B两种型号商品各有几件?
(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6 m3,其收费方式有以下两种:
①按车收费:每辆车运输货物到目的地收费600元;
②按吨收费:每吨货物运输到目的地收费200元.
要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?
| 体积(m3/件) | 质量(吨/件) | |
| A型商品 | 0.8 | 0.5 |
| B型商品 | 2 | 1 |
(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6 m3,其收费方式有以下两种:
①按车收费:每辆车运输货物到目的地收费600元;
②按吨收费:每吨货物运输到目的地收费200元.
要将(1)中的商品一次或分批运输到目的地,宏远商贸公司应如何选择运送、付费方式运费最少并求出该方式下的运费是多少元?