题目内容

(2010•温州一模)如图,n+1个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,△Bn+1DnCn的面积为Sn,则S2=    ;Sn=    .(用含n的式子表示)
【答案】分析:由三角形的相似性可求得S2、S3、S4的值,则Sn的值也可用含n的式子表示出来.
解答:解:由于各三角形为等边三角形,且各边长为2,过各三角形的顶点B1、B2、B3…向对边作垂线,垂足为M1、M2、M3
∵△AB1C1是等边三角形,
∴AD1=AC1•sin60°=2×=
∵△B1C1B2也是等边三角形,
∴C1B1是∠AC1B2的角平分线,
∴AD1=B2D1=
故S1=S△B2C1A-S△AC1D1=×2×-×2×=
S2=S△B3C2A-S△AC2D2=×4×-×4×=
作AB∥B1C1,使AB=AB1,连接BB1,则B2,B3,…Bn在一条直线上.
∵Bn Cn∥AB,
==
∴BnDn=•AD=
则DnCn=2-BnDn=2-=
△BnCnBn+1是边长是2的等边三角形,因而面积是:
△Bn+1DnCn面积为Sn===
即第n个图形的面积Sn=
点评:本题考查了相似三角形的性质,题目新颖,同学们要好好掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网