题目内容
要组织一次排球邀请赛,参赛的每两队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请_________个队参赛.
如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=5,DE=6.5,则CD的长等于_______.
最近流感高发期,在预防流感期间学校坚持天天消毒,下图是某次消毒时教室内空气中消毒液浓度 y(单位:毫克/立方米)随时间 x(单位:分钟)的变化情况图.从开始喷药到喷药结束的 10 分钟内(包括第十分钟),y 是 x 的二次函数;喷药结束后(从第十分钟开始),y 是 x 的反比例函数.
(1)如果点 A 是图中二次函数的顶点,求二次函数和反比例函数的解析式 (要写出自变量取值范围);
(2)已知空气中消毒液浓度 y 不少于 15 毫克/立方米且持续时间不少于 8 分钟才能有效消毒,通过计算,请你回答这次消毒是否有效?
已知⊙ O 的半径为1 ,点 P 到圆心 O 的距离为 d ,若抛物线 y ? x2 ? 2 x d 与 x 轴有两个 不同的交点,则点 P ( )
A. 在⊙ O 的内部 B. 在⊙ O 的外部 C. 在⊙ O 上 D. 无法确定
如图,菱形ABCD中,分别延长DC,BC至点E,F,使CE=CD,CF=CB,连接DB,BE,EF,FD.
求证:四边形DBEF是矩形.
从, , , 中随机抽取一个二次根式,化简后和的被开方数相同的概率是________.
某展览大厅有2个入口和2个出口,其示意图如图所示,参观者可从任意一个入口进入,参观结束后可从任意一个出口离开.小明从入口1进入并从出口A离开的概率是( )
A. B. C. D.
“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为_____.
如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.
(1)求证:OE是CD的垂直平分线.
(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系,并证明你的结论.