题目内容
如图,在平面直角坐标系中,以点M(
)为圆心,以
为半径的圆与x轴交于A、B两点,与y轴交于C、D两点.抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求该抛物线的解析式;
(2)若⊙M的切线交x轴正半轴于点P,交y轴负半轴于点Q,切点为N,且∠OPQ=30°,试判断直线PQ是否经过抛物线的顶点?说明理由;
(3)点K是⊙M位于y轴右侧上的一动点,连结KB交y轴于点H,问是否存在一个常数k.始终满足BH•BK=k?如果存在,请求出k的值;如果不存在,请说明理由.
∵M(
∴OC=
∴A(3
解得,
∴该抛物线的解析式为:y=
(2)直线PQ经过抛物线的顶点.理由如下:
由(1)知,抛物线的解析式为y=
如图,连接MN,设直线PQ交抛物线对称轴于点G.
∵PQ是⊙M的切线,∴MN⊥PQ.
∴∠1=∠2=30°.
又∵MN=2
∴MG=
∴直线PQ经过抛物线的顶点;
(3)存在,理由如下:
如图,连接AK.
∵AB是直径,
∴∠AKB=∠BOH=90°,
又∵∠HBO=∠ABK,
∴△BOH∽△BKA,
∴
分析:(1)易求得A(3
(2)如图,连接MN,设直线PQ交抛物线对称轴于点G.
由(1)中的函数解析式转化为顶点式解析式,直接写出该抛物线的顶点坐标(
(3)存在.如图,连接AK.构建相似三角形:△BOH∽△BKA,所以根据相似三角形的对应边成比例来求k的值.
点评:本题主要考查了二次函数解析式的确定、函数图象交点的求法等知识点.主要考查学生数形结合的数学思想方法.
练习册系列答案
相关题目