题目内容
在△ABC中,6∠A=3∠B=2∠C,则△ABC是( )
A. 锐角三角形 B. 直角三角形 C. 钝角三角形 D. 无法确定
已知直角三角形中30°角所对的直角边长是cm,则另一条直角边的长是( )
A. 4cm B. cm C. 6cm D. cm
一次水灾中,大约有20万人的生活受到影响,灾情持续一天,就需粮食可能为( )
A. 50万千克 B. 40万千克 C. 20万千克 D. 10万千克
如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.
如图,已知四边形ABCD中,AB∥DC,连接BD,BE平分∠ABD,BE⊥AD,∠EBC和∠DCB的角平分线相交于点F,若∠ADC=110°,则∠F的度数为( )
A. 115° B. 110° C. 105° D. 100°
如图1,经过原点O的抛物线与x轴交于另一点,在第一象限内与直线交于点.
求这条抛物线的表达式;
在第四象限内的拋物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;
如图2,若点M在这条抛物线上,且,
求点M的坐标;
在的条件下,是否存在点P,使得∽?若存在,求出点P的坐标;若不存在,请说明理由.
某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:
(1)在这次调查中,喜欢篮球项目的同学有 人,在扇形统计图中,“乒乓球”的百分比为 %,如果学校有800名学生,估计全校学生中有 人喜欢篮球项目.
(2)请将条形统计图补充完整.
(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.
动手操作:如图①是一个长为2a,宽为2b的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形.
提出问题:
(1)观察图②,请用两种不同的方法表示阴影部分的面积:_____________,_____________;
(2)请写出三个代数式(a+b)2,(a-b)2,ab之间的一个等量关系:___________________________;
问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知x+y=8,xy=7,求x-y的值.
若一次函数图象经过点,则该函数图象有可能经过点
A. B. C. D.