题目内容
【题目】如图,正方形
中,
为
的中点,
的垂直平分线分别交
,
及
的延长线于点
,
,
,连接
,
,
,连接
并延长交
于点
,则下列结论中:①
;②
;③
;④
;⑤
;⑥
;⑦
.正确的结论的个数为( )
![]()
A.3B.4C.5D.6
【答案】B
【解析】
①作辅助线,构建三角形全等,证明△ADE≌△GKF,则FG=AE,可得FG=2AO;
②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,证明△ADE∽△HOA,得
,于是可求BH及HE的值,可作出判断;
③分别表示出OD、OC,根据勾股定理逆定理可以判断;
④证明∠HEA=∠AED=∠ODE,OE≠DE,则∠DOE≠∠HEA,OD与HE不平行;
⑤由②可得
,根据AR∥CD,得
,则
;
⑥证明△HAE∽△ODE,可得
,等量代换可得OE2=AHDE;
⑦分别计算HC、OG、BH的长,可得结论.
解:①如图,过G作GK⊥AD于K,![]()
∴∠GKF=90°,
∵四边形ABCD是正方形,
∴∠ADE=90°,AD=AB=GK,
∴∠ADE=∠GKF,
∵AE⊥FH,
∴∠AOF=∠OAF+∠AFO=90°,
∵∠OAF+∠AED=90°,
∴∠AFO=∠AED,
∴△ADE≌△GKF,
∴FG=AE,
∵FH是AE的中垂线,
∴AE=2AO,
∴FG=2AO,
故①正确;
②设正方形ABCD的边长为2x,则AD=AB=2x,DE=EC=x,
,
易得△ADE∽△HOA,
![]()
,
,
Rt△AHO中,由勾股定理得:AH=
,
∴BH=AH-AB=
,
∵HE=AH=
,
∴HE=5BH;
故②正确;
③
,
,![]()
∴
,
∴OC与OD不垂直,
故③错误;
④∵FH是AE的中垂线,
∴AH=EH,
∴∠HAE=∠HEA,
∵AB∥CD,
∴∠HAE=∠AED,
Rt△ADE中,∵O是AE的中点,
∴OD=
AE=OE,
∴∠ODE=∠AED,
∴∠HEA=∠AED=∠ODE,
当∠DOE=∠HEA时,OD∥HE,
但AE>AD,即AE>CD,
∴OE>DE,即∠DOE≠∠HEA,
∴OD与HE不平行,
故④不正确;
⑤由②知BH=
,
,
延长CM、BA交于R,![]()
∵RA∥CE,
∴∠ARO=∠ECO,
∵AO=EO,∠ROA=∠COE,
∴△ARO≌△ECO,
∴AR=CE,
∵AR∥CD,
,
![]()
![]()
故⑤正确;
⑥由①知:∠HAE=∠AEH=∠OED=∠ODE,
∴△HAE∽△ODE,
![]()
∵AE=2OE,OD=OE,
∴OE2OE=AHDE,
∴2OE2=AHDE,
故⑥正确;
⑦由②知:HC=
,
∵AE=2AO=OH=
,
tan∠EAD=
,
,
,
∵FG=AE
,
,
∴OG+BH=
,
∴OG+BH≠HC,
故⑦不正确;
综上所述,本题正确的有;①②⑤⑥,共4个,
故选:B.
【题目】一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算2个小球上的数字之和.记录后将小球放回袋中搅匀,进行重复试验,试验数据如下表:
摸球总 次数 | 10 | 20 | 30 | 60 | 90 | 120 | 180 | 240 | 330 | 450 |
“和为8”出 现的频数 | 2 | 10 | 13 | 24 | 30 | 37 | 58 | 82 | 110 | 150 |
“和为8”出 现的频率 | 0.20 | 0.50 | 0.43 | 0.40 | 0.33 | 0.31 | 0.32 | 0.34 | 0.33 | 0.33 |
解答下列问题:
(1)如果试验继续进行下去,根据上表提供的数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是________;
(2)如果摸出的2个小球上数字之和为9的概率是,那么x的值可以为7吗?为什么?