题目内容
如图,Rt△ABC中,∠C=90°,D为AC边上一点,连接BD,将△ABC沿BD折叠,顶点C恰好落在边AB上的点E处,若AC=2,BC=1,求CD的长.
有一拦水坝的横截面是等腰梯形,它的上底为米,下底为米,高为米,则此拦水坝斜坡的坡度和坡角分别是( )
A. , B. , C. , D. ,
已知二次函数.
用配方法求该抛物线的对称轴,并说明:当取何值时,的值随值的增大而减小?
将二次函数的图象经过怎样的平移能得到的图象?
掷一次骰子(每面分别刻有点),向上一面的点数是质数的概率等于( )
A. B. C. D.
如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).
(1)用这样的两个三角形构造成如图(2)的图形(B,E,C三点在一条直线上),利用这个图形,求证:.
(2)当a=1,b=2时,将其中一个直角三角形放入平面直角坐标系中(如图(3)),使直角顶点与原点重合,两直角边a,b分别与x轴、y轴重合.请在坐标轴上找一点C,使△ABC为等腰三角形.
①写出一个满足条件的在x轴上的点的坐标: ;
②写出一个满足条件的在y轴上的点的坐标: ;
③满足条件的在y轴上的点共有 个.
如图所示,一只蚂蚁在正方体的一个顶点A处,它能爬到顶点B处寻找食物,若这个正方体的棱长为1,则这只蚂蚁所爬行的最短路程为________.
已知正比例函数y=kx(k≠0)中,y随x的增大而减小,那么一次函数y=kx﹣k的图象大致是如图中的( )
从,,这三个数中任取两个不同的数,作为平面直角坐标系中点的坐标,该点在第二象限的概率是________.
下列说法“①凡正方形都相似;②凡等腰三角形都相似;③凡等腰直角三角形都相似;④直角三角形斜边上的中线与斜边的比为;⑤两个相似多边形的面积比为,则周长的比为.”中,正确的个数有( )个
A. 1 B. 2 C. 3 D. 4