题目内容

4.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分…如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是(  )
A.2004B.2005C.2006D.2007

分析 根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过k次后,可得(k+1)个多边形,这些多边形的内角和为(k+1)×360°.因为这(k+1)个多边形中有34个六十二边形,可求它们的内角和,其余多边形有(k+1)-34=k-33(个),而这些多边形的内角和不少于(k-33)×180°.可得方程(k+1)×360°≥34×60×180°+(k-33)×180°,求得k≥2005.当我们按如下的方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取出33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便得到33个六十二边形和33×58个三角形.从而求解.

解答 解:根据题意,用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.
于是,剪过k次后,可得(k+1)个多边形,这些多边形的内角和为(k+1)×360°.
因为这(k+1)个多边形中有34个六十二边形,它们的内角和为34×(62-2)×180°=34×60×180°,
其余多边形有(k+1)-34=k-33(个),而这些多边形的内角和不少于(k-33)×180°.
所以(k+1)×360°≥34×60×180°+(k-33)×180°,
解得k≥2005.
当我们按如下的方式剪2005刀时,可以得到符合条件的结论.先从正方形上剪下1个三角形,得到1个三角形和1个五边形;再在五边形上剪下1个三角形,得到2个三角形和1个六边形如此下去,剪了58刀后,得到58个三角形和1个六十二边形.再取出33个三角形,在每个三角形上剪一刀,又可得到33个三角形和33个四边形,对这33个四边形,按上述正方形的剪法,再各剪58刀,便得到33个六十二边形和33×58个三角形.
于是共剪了58+33+33×58=2005(刀).
故至少要剪的刀数是2005刀.
故选:B.

点评 此题考查了三角形边角关系,关键是理解用剪刀沿不过顶点的直线剪成两部分时,每剪开一次,使得各部分的内角和增加360°.于是,剪过k次后,可得(k+1)个多边形,这些多边形的内角和为(k+1)×360°.因为这(k+1)个多边形中有34个六十二边形,它们的内角和为34×(62-2)×180°=34×60×180°,其余多边形有(k+1)-34=k-33(个),而这些多边形的内角和不少于(k-33)×180°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网