题目内容
如图,在△ABC中,AB=AC,∠A=36°,BD为∠ABC的平分线,DE∥AB,EF∥BD,则图中等腰三角形共有( )

| A.7个 | B.8个 | C.5个 | D.4个 |
∵AB=AC,
∴△ABC是等腰三角形;
∵∠A=36°,
∴∠C=∠ABC=
=
=72°,
∵BD是∠ABC的平分线,
∴∠ABD=∠2=
=36°,
∴∠ABD=∠A=36°,
∴AD=BD,
∴△ABD是等腰三角形;
∵DE∥AB,
∴∠1=∠ABD=∠2=36°,
∴△BDE是等腰三角形;
∵DE∥AB,
∴∠3=∠A=36°,
∴∠1+∠3=72°,
∴∠C=180°-∠2-(∠1+∠3)=180°-36°-72°=72°,
∴BD=BC,
∴△BDC是等腰三角形;
∵EF∥BD,
∴∠6=∠1=36°,
∴∠3=∠6=36°,
∴DF=EF,
∴△DEF是等腰三角形;
∵EF∥DE,
∴∠4=∠1+∠3=72°,
∵∠C=72°,
∴∠5=180°-∠C-∠4=180°-72°-72°=36°,
∴△CEF是等腰三角形;
∵∠C=72°,∠5+∠6=72°,
∴CD=DE,
∴△CDE是等腰三角形.
故图中的等腰三角形有:△ABC,△ABD,△BDC,△DEC,△BDE,△DEF,△EFC共7个.
故选A.

∴△ABC是等腰三角形;
∵∠A=36°,
∴∠C=∠ABC=
| 180°-∠A |
| 2 |
| 180°-36° |
| 2 |
∵BD是∠ABC的平分线,
∴∠ABD=∠2=
| 72° |
| 2 |
∴∠ABD=∠A=36°,
∴AD=BD,
∴△ABD是等腰三角形;
∵DE∥AB,
∴∠1=∠ABD=∠2=36°,
∴△BDE是等腰三角形;
∵DE∥AB,
∴∠3=∠A=36°,
∴∠1+∠3=72°,
∴∠C=180°-∠2-(∠1+∠3)=180°-36°-72°=72°,
∴BD=BC,
∴△BDC是等腰三角形;
∵EF∥BD,
∴∠6=∠1=36°,
∴∠3=∠6=36°,
∴DF=EF,
∴△DEF是等腰三角形;
∵EF∥DE,
∴∠4=∠1+∠3=72°,
∵∠C=72°,
∴∠5=180°-∠C-∠4=180°-72°-72°=36°,
∴△CEF是等腰三角形;
∵∠C=72°,∠5+∠6=72°,
∴CD=DE,
∴△CDE是等腰三角形.
故图中的等腰三角形有:△ABC,△ABD,△BDC,△DEC,△BDE,△DEF,△EFC共7个.
故选A.
练习册系列答案
相关题目